Pure Core 2 Past Paper Questions: Mark Scheme

Taken from MAME, MAP1, MAP2, MAP3

Methods November 2003

		$pq = 2^3$ Total	A1F	2	Allow $2^{\frac{6}{2}}$; ft wrong answer to (b)
	(c)	Addition of indices	M1		OE
	(b)	$q = \left(2^2\right)^{\frac{3}{4}} = 2^{\frac{3}{2}}$	В1	1	
5	(a)	$p = \left(2^3\right)^{\frac{1}{2}} = 2^{\frac{3}{2}}$	В1	1	Convincingly shown (AG)

Pure 1 January 2001

Q	Solution	Marks	Total	Comments
1 (a)	Differentiation	M1		at least one term correct
	$y' = 2x + 2x^{-3}$	A1		accept unsimplified
	$\cdots = 4\frac{1}{4}$ when $x = 2$	A1F	3	f.t numerical or sign error
(b)	Integration	M1		at least one term correct
	$\int y dx = \frac{1}{3} x^3 + x^{-1} (+c)$	A1	2	accept unsimplified
	J 3		_	ассерс аналиринеа
	Total		5	
3 (a)	Arc length = 4.5 cm	B1	1	condone misuse/omission of units
(b)	Use of sector area formula	M1		OE; award M1 even if degrees used
	Sector area = $6.75 \mathrm{cm}^2$	A1	2	allow all marks for sector and triangle
				whether done in (b) or (c)
	1 /)			
(c)	Triangle area = $\frac{1}{2}(3^2)\sin 1.5$	M1		
	$\cdots \approx 4.49 \text{ cm}^2$	A1		PI
	Subtraction	m1		
	Segment area $\approx 2.26 (\approx 2.3) \text{ cm}^2$	A1	4	convincingly found (AG)
	Total		7	

	Total		11	
	$\cdots = 10 \ln 2 - 7 \ln 3$	A1F	4	f.t one small error
	$\ln u = \ln 27 + 10(\ln 2 - \ln 3)$	A1F		f.t 11 instead of 10
	Use of log law(s)	M1		at least one law appropriately used
(u)	$u = 27\left(\frac{2}{3}\right)^{10}$	Di		OE .
(d)	27(2)10	B1		OE
		A1	3	accurate value needed (> 80 given)
	···≈ 80.06 (>80)			$1 - \frac{\pi}{3}$
	Sum to 11 terms = $\frac{27(1-(\frac{2}{3})^{11})}{1-\frac{2}{3}}$	A1		$\frac{27 - \left(\frac{2}{3}\right)^{11}}{1 - \frac{2}{3}}$ earms M1A0A0
(0)		1411		11 terms
(c)	Use of formula for sum to <i>n</i> terms	M1		with numbers substituted; OE e.g. add
	Sum to infinity = $\frac{27}{1-\frac{2}{3}}$ = 81	A1	2	convincingly found (AG)
(0)	•	IVII		to <i>n</i> terms
(b)	Use of formula for sum to infinity	M1		with numbers substituted; OE e.g. sum
	$\cdots = 8 \text{ metres}$	A1	2	condone omission of units
5 (a)	Length of 4th piece is ar ³	M1	2	

Pure 1 June 2001

5		$y = x^{\frac{3}{2}}$ $\frac{dy}{dx} = \frac{5}{2}x^{\frac{3}{2}}$ $\dots = 67\frac{1}{2}$	BI MIAI AIF	3	M1 for kx^{p-1} with c's non-integer value of p ft wrong coefficient of $x^{\frac{3}{2}}$
				8	
	c	At least one of c's values halved All of c's values halved	M1 A1F	2	Must be more than one root found
		Any one correct root Roots are $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$	B1 B1	4	Condone degrees or dec approx here B0 if other values given between 0 and 2π
	b	Solving appropriate quadratic $\sin \theta = \frac{1}{2}$ or -1	M1 A1		Allow NMS
4	a	Use of $\sin^2 \theta + \cos^2 \theta = 1$ $2s^2 + s - 1 = 0$	M1 A1	2	convincingly shown (AG)
		Sum is $3^n - 1$	Al	3	ie $p = 3$, $q = 1$: condone $q = -1$ if no other error seen; NMS 2/3
	b	Use of correct formula for finite G All values correct	P M1 A1		with values inserted, mostly correct
1	a	Use of correct formula for AP (OE All values correct Sum is 75 150	Al Al	3	with values inserted, mostly correct NMS 2/3

Pure 1 January 2002

Q	Solution	Marks	Total	Comments
			Total	
1 (a)	Use of $y' = nx^{n-1}$	M1		coeff or index right or both approx right
	1 -2	l		
	$y' = \frac{1}{2}x^3$	A1	2	
(b)(i)	n+1	MI		Cooff on index sight on consistent with
(b)(i)	$\int y \mathrm{d}x = \frac{x^{n-1}}{c} (+c)$	M1		Coeff or index right or consistent with each other
	$y' = \frac{1}{3}x^{\frac{-2}{3}}$ $\int y dx = \frac{x^{n+1}}{n+1}(+c)$ $= \frac{\frac{4}{3}}{\frac{4}{3}}(+c)$			Cach other
	$\frac{7}{3}$			
	$=\frac{\kappa}{4/}(+c)$	A1	2	Accept unsimplified
an.				
(ii)		M1		not in y or in y'
	∫ ₁ = 12			4/
		A1F	2	ft wrong coeff of $x^{\frac{4}{3}}$; allow decimals
2 (a)	Total		6	
()	$\log_2 8 = 3 \text{ because } 2^3 = 8$	E1	1	OE; AG
(b)(i)	$\log_2(8^4) = 12$	B1	1	
(ii)	Use of at least one log law	M1		OE, eg $\frac{1}{\sqrt{8}} = 8^{-\frac{1}{2}}$
(11)		IVII		$\frac{\partial L}{\partial S}$, $\frac{\partial S}{\partial S}$
	$\log_2\left(\frac{1}{\sqrt{8}}\right) = -\frac{3}{2}$	A1	2	NMS B1 for AWRT –1.5
	Total		4	
3 (a)		M1	4	-H M1 f 15 + 2
5 (ii)	Use of formula for <i>n</i> th term of AP <i>n</i> th term = $15 + 3(n - 1)$		2	allow M1 for, eg, $15 + 3n$
(b)	Formula for sum of AP	A1 M1		allow even if formula not used
(b)				
	Total time = $\frac{1}{2}n(30 + 3(n-1))$ days	A1F		ft wrong answer to (a)
	3 (, 0) 1		_	
	$= \frac{3}{2}n(n+9) \text{ days}$	A1	3	convincingly found (AG)
(c)	$\frac{3}{2}n(n+9) = 600$	M1		With attempt to solve quadratic
	(n+25)(n-16) = 0	m1		Accept full list of 16 terms (3/3)
	Length = 16 miles	A1	3	NMS B2 for $n = 16$
	Total		8	

Question 5b

(b)(i)	Formula for sector area	M1		allow even if not used; condone degrees here (M1 A0)
	Area $A = 25\theta \text{ cm}^2$	A1	2	condone omission of units; accept unsimplified but not in terms of r
(ii)	Appropriate use of tan θ (OE)	M1		in finding area of Δ
	Area $\Delta = \frac{1}{2}OP \times PT = \frac{25}{2} \tan \theta \text{ cm}^2$	A1	2	accept unsimplified
(iii)	Area B is twice Δ minus A	M1		
	ie $25(\tan\theta - \theta) \text{ cm}^2$	A1	2	convincingly obtained (AG)
(iv)	Equating answers to part (i) and part (iii) $25(\tan \theta - \theta) = 25\theta$, hence result	M1 A1	2	dependent on M1 in part (i) ditto
(v)	$\theta \approx 1.2(AWRT)$	B1F	1	condone use of other methods or NMS; ft wrong interval of correct width in part (a)(ii)

Pure 1 June 2002

2 (a)	Correct formula for sum of AP stated.	M1		
	All values substituted	m1		
	Sum 392	A1	3	NMS 3/3
(b)(i)	Terms 47, 44, 41, 38	B2, 1	2	B1 for 47 or consistent errors
(ii)	16 positive terms justified	E2, 1	2	E1 for partial reasoning, e.g. $u_{16} = 2$
	Total		7	
		l .		

(ii) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ (b) $\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm) \frac{1}{\sqrt{2}}$ Other is $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$ (c) $\sin^2 x > \frac{1}{2} \Leftrightarrow \frac{\pi}{4} < x < \frac{3\pi}{4}$ (d) $\sin^2 x + \cos^2 x = 1$ stated B1 OE exact value ditto ditto Accept degrees or decimal approximation throughout (b) and (c) (at least 2 DP) NMS 2/2 ft first value wrong; allow NMS 2 ft wrong values in (b); condone \leq for \leq or complete method based on earlier results		Total		10	
(ii) $\cos \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ (b) $\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm) \frac{1}{\sqrt{2}}$ Other is $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$ (c) $\sin^2 x > \frac{1}{2} \Leftrightarrow \frac{\pi}{4} < x < \frac{3\pi}{4}$ (d) $\sin^2 x + \cos^2 x = 1$ stated B1 OE exact value ditto Attitude Alt Accept degrees or decimal approximation throughout (b) and (c) (at least 2 DP) NMS 2/2 ft first value wrong; allow NMS 2 ft wrong values in (b); condone \leq for \leq		Conclusion (AG)	A1	2	
(ii) $\sin \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ (iii) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ (b) $\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm) \frac{1}{\sqrt{2}}$ Other is $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$ B1 OE exact value ditto Accept degrees or decimal approximation throughout (b) and (c) (at least 2 DP) NMS 2/2 A1 Other is $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$ A1	(d)	$\sin^2 x + \cos^2 x = 1 \text{ stated}$	M1		
(ii) $\sin \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ (iii) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ (b) $\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm) \frac{1}{\sqrt{2}}$ One x - coordinate is $\frac{\pi}{4}$ B1 OE exact value ditto Accept degrees or decimal approximation throughout (b) and (c) (at least 2 DP) NMS 2/2	(c)	$\sin^2 x > \frac{1}{2} \Leftrightarrow \frac{\pi}{4} < x < \frac{3\pi}{4}$	B2F	2	ft wrong values in (b); condone ≤ for <
(ii) $\sin \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ (iii) $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ (b) $\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm) \frac{1}{\sqrt{2}}$ B1 OE exact value ditto Accept degrees or decimal approximation throughout (b) and (c) (at least 2 DP)		Other is $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$	A1F	3	ft first value wrong; allow NMS
(ii) $\sin \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ B1 OE exact value ditto (iii) $\tan \frac{\pi}{3} = \sqrt{3}$ B1 ditto		One x - coordinate is $\frac{\pi}{4}$	A1		NMS 2/2
(ii) $\sin \frac{\pi}{4} = \frac{\sqrt{3}}{\sqrt{2}}$ B1 OE exact value ditto	(b)	$\sin^2 x = \frac{1}{2} \Rightarrow \sin x = (\pm)\frac{1}{\sqrt{2}}$	M1		1 0 11
$\sin \frac{1}{4} = \frac{1}{\sqrt{2}}$ B1 OE exact value	(iii)	$\tan\frac{\pi}{3} = \sqrt{3}$	В1	3	ditto
$\left \frac{\sin \frac{\pi}{4}}{\sin \frac{\pi}{4}} \right = \frac{1}{\sqrt{2}}$ B1 OE exact value	(ii)	$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	В1		ditto
5 (-)(D) 1	5 (a)(i)	$\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$	В1		OE exact value

				1
Q	Solution	Marks	Total	Comments
6 (a)(i)	$\alpha = \frac{\pi}{3}$	B1	1	Condone decimal approximation here
(ii)	Arc length = $r\alpha$	M1		OE; Allow even if not used
	$\dots = 2\pi$ cm	A1	2	Condone dec and/or no units
(iii)	Area $\Delta = \frac{1}{2}bc\sin\alpha$	M1		OE; must be used
	Correct use of $\sin 60^\circ = \frac{\sqrt{3}}{2}$	m1		OE, eg Pythagoras and $\sqrt{27} = 3\sqrt{3}$
	Area $9\sqrt{3}$ cm ²	A1	3	convincingly found (AG)
(iv)	Sector area $=\frac{1}{2}r^2\alpha$	M1		OE; Allow even if not used
	Both values substituted	m1		
	$\dots = 6\pi \text{ cm}^2$	A 1	3	convincingly found (AG)
(b)(i)	Total length = $3 \times$ length of arc BC	M1		PI
	≈19 cm	A1F	2	Accept AWRT 19; condone omission of units; NMS 2/2 ft wrong answer to (a)(ii) provided M1 earned there
(ii)	Segment area considered	M1		PI
	Total area = 3(segment)+ triangle	m1		OE; condone halving of this area
	$ \approx 25 \text{ cm}^2$	A1	3	Accept AWRT 25; condone omission of units
	Total		14	

Pure 1 November 2002

2	(a)	$u_1 = 10.5$, $u_2 = 11$	B1B1	2	Allow 1/2 for answers 10, 10.5
	(b)	Common difference is 0.5	B1	1	
	(c)	$10 + 0.5n = 25 \Rightarrow 0.5n = 15$	M1		
		$ \Rightarrow n = 30$	A1	2	NMS 2/2
	(d)	Formula for sum of AP stated	M1		
		$Sum = \frac{30}{2}(10.5 + 25)$	m1		OE; Allow with one error
		= 532.5	A1	3	NMS 3/3
		Total		8	
3	(a)	$\int x^{\frac{3}{2}} dx = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} (+c)$	M1A1	8	M1 for attempt at $\frac{x^{n+1}}{n+1}$
3	(a)		M1A1	8	M1 for attempt at $\frac{x^{n+1}}{n+1}$ Subtraction must be the right way round

		Total		8	
4	(a)	$\log_2 8 = 3$	B1	1	
	(b)	$\log_2 9 = 2\log_2 3$	B1	1	
	(c)	$\log_2 72 = \log_2 8 + \log_2 9 = 3 + 2\log_2 3$	B1F	1	ft wrong answers to (a) and/or (b), even where answer not of required form
		Total		3	

Q	Solution	Marks	Total	Comments
5 (a)	$3\frac{\sin\theta}{\cos\theta} = 2\cos\theta \implies 3\sin\theta = 2\cos^2\theta$	B1	1	NB Allow overspill between the parts of this question eg work for (c)(i) done in (b) AG: either $\frac{\sin \theta}{\cos \theta}$ or "×cos θ " must be
(b)	$\sin^2 \theta + \cos^2 \theta \equiv 1$ quoted	M1		seen
	$3\sin\theta = 2(1-\sin^2\theta)$	A1		Replacing \cos^2 with $1 - \sin^2$ in equation in (a), or replacing \sin^2 with $1 - \cos^2$ in equation in (b)
	So $2\sin^2\theta + 3\sin\theta - 2 = 0$	A1	3	AG but condone reverse logic Must see intermediate step(s) from previous A1
(c)(i)	Attempt to solve for $\sin \theta$ $(2\sin \theta - 1)(\sin \theta + 2) = 0$	M1		M0 for verification
	Values correct and conclusion drawn	A1		OE; NMS 2/2 for roots $\frac{1}{2}$ and -2 ; NMS 1/2 for roots $\frac{1}{2}$, 2
		A1	3	AG: impossibility of $\sin \theta \pm 2 = 0$ must be explained correctly
(ii)	$\theta = \frac{\pi}{6}$	B1		Condone degrees or decimals in (ii)
	$\theta = \frac{5\pi}{6} $ (and no others in domain)	B1F	2	Ignore values outside domain; ft first value wrong
(iii)	$\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$	В1		OE exact form
	$\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	B1	2	OE exact form
(iv)	$3\left(\frac{1}{\sqrt{3}}\right) = \sqrt{3} , 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$	В1	1	AG: $\sqrt{3}$ in denominator must be handled properly
	Total		12	

Pure 1 January 2003

			Total	Comments
1 (a)	$10r = 9 \Longrightarrow r = 0.9$	B1	1	Convincingly shown (AG)
(b) I	Formula for <i>n</i> th term of GP stated	M1		Or used
	$u_n = 10(0.9)^{n-1}$	A1	2	OE
(c) I	Formula for sum to <i>n</i> terms stated	M1		Or used; M0 for list of terms
	$S_{25} = \frac{10(1 - 0.9^{25})}{1 - 0.9} \approx 92.8(21)$	A1	2	AG (92.8): allow just 3SF if no error
(d) 1	Formula for sum to infinity stated	M1		Or used
	$S_{\infty} = 100$	A 1	2	
	Total		7	

4 (a)(i)	Use of $\sin^2 \theta + \cos^2 \theta \equiv 1$	M1		OE, e.g. Pythagoras
	$\cos\theta = \frac{12}{13}$ convincingly shown	A1	2	AG but condone no mention of ±
(ii)	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$	M1		OE, eg right-angled triangle
	$\tan \theta = \frac{5}{12}$	A1	2	
(b)	$\theta \approx 0.395$	B1	1	Condone AWRT 0.395 or 22.6°
(c) (i)	Formula for arc length stated	M1		or used
	$r \approx \frac{5}{0.395} \approx 12.7$	A1	2	AG (12.7)
(ii)	Formula for sector area stated	M1		or used
	Substitution of appropriate values	m1		not $\frac{1}{2}(12.7^2)(22.6)$
	Area is $\frac{1}{2}(12.7)^2$ (0.395) $\approx 32 \text{ cm}^2$	A1	3	Condone absence of units; accept AWRT 32
	Total		10	
6 (a)(i)	$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$	M1A1	2	M1 if coefficient or index correct
(ii)	Gradient at $x = 4$ is $\frac{1}{4}$	A1F	1	ft wrong coeff
(b)(i)	$\int f(x)dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}}$	M1A1		M1 for $kx^{\frac{3}{2}}$
	+ 2x (+c)	B1	3	
(ii)	Substituting $x = 4$	M1		In c's integral (not $f(x)$ or $f'(x)$)
	$\int_0^4 \mathbf{f}(x) \mathrm{d}x = \frac{40}{3}$	A1	2	Convincingly found (AG)
(c)	$y = x^{\frac{1}{2}} + 2 \Rightarrow x^{\frac{1}{2}} = y - 2$	M1		OE
	$\Rightarrow x = (y-2)^2$, hence result	A1	2	Convincingly shown (AG)
(d)(i)	Line of symmetry is $y = x$	B1	1	
(ii)	Complete method for area of A	M2, 1		M1 for area of some relevant region (not just a rectangle or triangle) or $\int_{2}^{4} (x-2)^{2} dx$
	Shaded area is $\frac{32}{3}$	A2,1	4	A1 for area of relevant region or $ = \frac{8}{3}$
				or if c makes one error after M2
				SC M1A1 for
				$\int_{0}^{4} f(x) dx - \int_{0}^{4} f^{-1}(x) dx = 8$
	Total		15	

Pure 1 June 2003

	Total		9	
				allow ' $y'' = 24x^{-4} > 0$ ' without a value
	so SP is a min	E1F	4	ft wrong (non-zero) value of y'' at SP;
	$\dots = \frac{3}{2} \text{ at SP}$	A1F		ft wrong coefficient of x^{-4}
	3			ft numerical error or $y' = -8x^{-3}$
(c)	$y'' = 24x^{-4}$	m1A1F		m1 if index correct;
	SP is (2, 3)	A1A1	3	NMS $x = 2, B1$ $y = 3, B1$
(b)	At SP, $8x^{-3} = 1$	m1		
2(a)	$y' = 1 - 8x^{-3}$	M1A1	2	M1 if at least one term correct
	Total		6	
	$= \frac{1}{2}(4 \times 8) - 12.8 = 3.2$	A1F	2	ft wrong answer to (a)(ii) provided answer > 0
(b)	Required Area = area of $\triangle - 12.8$	M1		Condone eg area of $\Delta = 4 \times 8$
	$\int_0^4 x^{\frac{3}{2}} \mathrm{d}x = \frac{64}{5} = 12.8$	A1F	2	ft wrong coefficient of $x^{\frac{5}{2}}$
(ii)	Substitution of $x = 4$	m1		
	2			condone $1\frac{3}{2}$ for $\frac{5}{2}$
1 (a)(i)	$\int x^{\frac{3}{2}} dx = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} (+c)$	M1A1	2	M1 if index correct or for example $\frac{\frac{4}{x^2}}{\frac{4}{2}}$;

3(a)(i)	Sector area formula	M1		Allow even if formula not used
	Sector area = 32θ cm ²	A1	2	Condone omission of units throughout
(ii)	Appropriate use of $\sin \theta$	M1		
	Triangle area = $32 \sin \theta \mathrm{cm}^2$	A1	2	
(iii)	Segment area = $(32\theta - 32\sin\theta)$ cm ²	A1F	1	ft c's answers, dependent on both M marks
4 (a)	$\sin^2 x + \cos^2 x \equiv 1 \text{ stated}$	M1	'	or used
	$2\sin^2 x + \sin x = 0$	A1	2	convincingly shown (AG)
(b)	$\sin x = 0 \text{ or } -\frac{1}{2}$	B1B1		
	$\sin x = 0 \Rightarrow x = 0 \text{ or } \pi$	B1		In (b) condone degrees or decimals, and ignore values outside domain
				B0 if other values in domain included
	Use of $\sin \frac{\pi}{6} = \frac{1}{2}$ OE	M1		PI
	$\sin x = -\frac{1}{2} \Rightarrow x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$	A1A1	6	Deduct 1 for each incorrect value given (in domain) NMS 4/4
	Total		8	

4 4 3 40	Language (P)	D.		or.
6 (a)(i)	Increase is $a\left(\frac{p}{100}\right)$	B1		OE
	So common ratio is $1 + \frac{p}{100}$	B1	2	convincingly shown (AG)
(ii)	$b = 2000 \left(1 + \frac{p}{100} \right)$ $c = 2000 \left(1 + \frac{p}{100} \right)^2$	B1		Condone a for 2000 here
	$c = 2000 \left(1 + \frac{p}{100} \right)^2$	B1	2	ditto
(b)(i)	Equating last answer to 2332.8	M1		2000 must be present now
	$\left(1 + \frac{p}{100}\right)^2 = 1.1664$	A1		OE; verification earns M1A1 max
	So $p = 8$	A1	3	convincingly shown (AG)
(ii)	Use of ar ⁿ	M1		Allow ar^{n-1} or ar^{n+1}
	$u_n = 2000(1.08)^n$	A1	2	Condone $2000(1.08)^{n-1}$ here
(iii)	Balance = £2000(1.08) 10	M1		Condone index 9 or 11 here
	≈ £4317.85	A1	2	NMS 2/2; allow AWRT 4320 or 4310 to 3sf
	Total		11	
	Total		60	

Pure 1 November 2003

Solution

1 ((a) Common ratio = $\frac{1}{3}$	В1	1	Allow AWRT 0.333
	(b) Formula for 10 th term	M1		Stated or used; condone ar ¹⁰
	$10^{\text{th}} \text{ term } = \frac{2}{3^8} \approx 0.000305$	A1	2	NMS 2/2; condone 0.000304 or AWRT 0.0003048
	(c) Formula for sum to infinity	M1		Stated or used
	Sum to infinity = $\frac{6}{\frac{2}{3}}$ = 9	A 1	2	Must be exact
	Total		5	
2(a)	(i) $y' = 5\left(\frac{3}{2}x^{\frac{1}{2}}\right) - 3$ (ii) = 0 when $15x^{\frac{1}{2}} = 6$	M1A1	2	M1 if coeff and/or index correct in 1 st term
(m1		
	ie $x^{\frac{1}{2}} = 0.4$	A1		Allow B1 for verification after m1 or m0
	ie $x = 0.16$	A1	3	Conclusion must be drawn (AG)
3 (a)	Right shape from O to asymp	M1		Ignore anything shown outside domain
	Complete graph	A 1		
	Correct x scale indicated	A1		Condone decimals and/or degrees in (a) and (b)
	Asymptotes $x = \frac{\pi}{2}$, $x = \frac{3\pi}{2}$	A1	4	Equations needed, not just x values; Condone $x \neq$ but not $y =$
(b)	3	B1		Allow AWRT 1.05
	Second root is $\frac{\pi}{3} + \pi = \frac{4\pi}{3}$	M1A1F	3	AWRT 4.19; ft wrong value for first root; ignore roots outside domain; A0 if c gives other 'root(s)' in domain

Total

Comments

			v	
5 (a)	$5^3 = 125 \text{ so } \log_5 125 = 3$	E1	1	
(b)(i)	$\log_5(125^2) = 2 \times 3 = 6$	B1	1	
(ii)	$\log_5 \sqrt{125} = 3 \div 2 = \frac{3}{2}$	В1	1	
(iii)	$\log_5\left(\frac{1}{\sqrt{125}}\right) = -\frac{3}{2}$	B1F	1	ft wrong answer to (ii)
(c)	Use of $\log kx = \log k + \log x$	M1		or $125x = 5^4$
	x = 5	A1	2	
	Total		6	
6 (a)(i)	$10^{\circ} = \frac{\pi}{18} \text{ rad } \left(\approx 0.056\pi\right)$	M1A1	2	M1 for attempt, condone AWRT 0.055π or 0.056π
(ii)	Sector area formula	M1		Stated or used
	$Area = \frac{1}{2} (60)^2 \left(\frac{\pi}{18}\right) \left(mm^2\right)$	m1		Allow use of c's answer to (i)
	$\dots = 100\pi \mathrm{mm}^2$	A1	3	Must be exact here (AG)
(b)(i)	Area of S_2 is $120\pi (\text{mm}^2)$	A1		Condone decimals in (b)(i) (377, 440,503)
	Areas 140π , 160π (mm ²)	A1A1	3	NMS 2/3 even after M0 or m0
				SC 2/3 for consistent attempts to use
				$\frac{1}{2}r^2\theta$
(ii)	Formula for sum of AP	M1		Stated or used
	$Sum = \frac{n}{2} (200\pi + (n-1)(20\pi))$	m1		OE; condone one small error
	$ = 100\pi n + 10\pi n(n-1)$	A1		OE
	= $10\pi n(n+9)(\text{mm}^2)$	A1	4	Convincingly shown (AG)
(iii)	Attempt at verification	M1		or solution of appropriate equation
	$n = 15 \Rightarrow \text{sum} = 3600\pi (\text{mm}^2)$	A1		OE, eg with angles rather than areas
	= area of disc, hence result	A1	3	Convincingly shown (AG)
	Total		15	

Pure 1 January 2004

0										
Q	Solution	Marks	Total	Comments						
1 (a)	$\int x^{\frac{1}{2}} dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} (+c)$	M1A1	2	M1 for the correct power of x						
(b)	Substitution of $x = 2$	ml								
	$\int_{0}^{2} x^{\frac{1}{2}} dx = \frac{2}{3} (2^{\frac{3}{2}})$	A1F		ft wrong coeff of $x^{\frac{3}{2}}$; decimals not allowed						
	$\dots = \frac{4}{3}\sqrt{2}$	A1F	3	ditto						
	Total		5							
2 (a)	$u_1 = 6, u_2 = 18$	B1B1	2	Allow 1/2 for answers 2, 6						
(b)	Common ratio is 3	B1	1	Condone 1:3						
(c)	Formula for sum of GP stated	M1		or used						
	$S_{10} = \frac{6(3^{10} - 1)}{3 - 1}$	m1		Allow with one numerical error						
	$=3(3^{10}-1)$	A1	3	Convincingly shown (AG)						
	Total		6							
3 (a)	Sector area formula stated Sector area = 12.5 θ (cm ²)	M1 A1	2	or used Condone omission of units throughout						
(b)(i)	Equating sector area to 6.25 $\theta = 0.5$	M1 A1	2							
(ii)	Č	M1		or used						
	Perimeter = 22.5 (cm)	A1F	2	ft wrong value of θ						
	Total		6							
4(a)(i)	Terms 102, 104	B1B1	2							
(ii)	Formula for <i>n</i> th term stated $100 + 2(n-1) = 200$	M1 m1		or used OE; allow with one numerical error						
	No of terms = 51	A1	3	Allow NMS; allow 2/3 for answer 50						
(b)	Formula for sum of AP stated Total length = $\frac{51}{2}$ (100+200)	M1 M1		or used OE; allow with one numerical error						
	= 7650 (mm)	A1	3	SC allow 3/3 for correct answer obtained by adding all 51 numbers but NMS 1/3						
	Total		8							

0	Solution	Maulia	Total	Comments
Q	Solution	Marks	Total	Comments
7 (a)	6 4	B1		Allow 0.5
	$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$	В1		OE surd, eg $\sqrt{0.75}$
	$\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$	B1	3	OE surd, eg $\sqrt{\frac{1}{3}}$ or $\frac{\sqrt{3}}{3}$
(b)	Either $\sin^2 x + \cos^2 x \equiv 1$ stated	M1		or used
	Elimination of $\sin x$ or of $\cos x$	ml		
	$4\cos^2 x = 3 \text{ or } 4\sin^2 x = 1$	A1		OE
	Or $\tan x \equiv \sin x / \cos x$ stated	M1		or used
	Equation in terms of tan x only	m1		
	$3 \tan^2 x = 1$	A1		OE
	Then one value is $\frac{\pi}{6}$	В1		Condone 0.52; condone degrees or decimals throughout
	At least one other value found	M1		NMS 2/2 if completely correct list given
	Values are $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{11\pi}{6}$ only	A1	6	Ignore values outside domain
	Total		9	

Q	Solution		Marks	Total	Comments
1(a)	Formula for sum of AP		M1		Stated or used
	All numbers substituted		m1		Condone one error here
	Sum is 20 100		A1	3	NMS 3/3
(b)(i)	Values are 6, 14, 22, 30		B2, 1	2	B1 for one error, eg – 2, 6, 14, 22
(ii)	Any clear correct method		M1		
	Sum is $2 \times 20100 = 40200$		A1F	2	ft wrong answer to (a); NMS 2/2
	,	Total		7	
2(a)	Arc length formula		M1		stated or used (θ) in radians
	$P = 8(\theta + 2)$		A1	2	Convincingly shown (AG)
	, ,				
(b)	Sector area formula		M1		Stated or used $(\theta \text{ in radians})$
	$A = 32 \theta$		A1	2	
	11 320		711	_	
(c)	$32\theta = 8(\theta + 2)$		M1		Condone mixture of deg and rad her
(-)	, , , ,		1411		1.6
	Solving to give $\theta = \frac{2}{3}$		m1A1F	3	Allow $\frac{16}{24}$; ft numerical error in (b
	Solving to give $v = \frac{1}{3}$		IIIIAII	3	NMS 2/3
	,	Total		7	INVIS 2/3
3(a)		Total	B1B1	,	
- ()	Sign change, so root between		E1	3	
	Sign change, so foot between		EI	3	
	(1)				<u> </u>
(b)(i)	$ v'=2 \frac{3}{2}x^{\frac{1}{2}} $		M1A1		M1 for $kx^{\frac{1}{2}}$
(~)(1)	$\begin{pmatrix} 2 \end{pmatrix}$				
	$y' = 2\left(\frac{3}{2}x^{\frac{1}{2}}\right)\dots$ $\dots = 9$ $y'' = 3\left(\frac{1}{2}x^{-\frac{1}{2}}\right)$		D1		
	= 9		В1		
	$y'' - 3\left(\frac{1}{2}x^{-\frac{1}{2}}\right)$				
	$y = 3 \begin{pmatrix} x & y \\ 2 & y \end{pmatrix}$		M1A1	5	M1 for $kx^{\frac{1}{2}}$ as deriv of 1st term
(!!)	At SP $3x^{\frac{1}{2}} = 9$				
(11)	At SP $3x^2 = 9$		M1		Or B1 for $x = 9$ verified,
					then B1 for $y = -27$
	So $x = 9$		A1F		ft numerical error in y'
	and $y = -27$		A1	3	
(iii)	At SP $y'' = \frac{1}{2}$		В1		
	2		D.		
	This is positive, so minimum		E1F	2	ft wrong value for y"at SP

Q	Solution	Marks	Total	Comments
4(a)	ln(pq) = ln p + ln q	В1	1	
(b)	$\ln\left(p^2q^3\right) = 2\ln p + 3\ln q$	В1	1	
(c)	$\ln(p^2 q^3) = 2 \ln p + 3 \ln q$ $\ln\left(\frac{p}{q}\right) = \ln p - \ln q$	В1	1	
(d)	$\ln\sqrt{\frac{p}{q}} = \frac{1}{2}\ln p - \frac{1}{2}\ln q$	B1F	1	ft wrong answer to (c)
	Total		4	
5(a)(i)	$r = \frac{345}{230} = 1.5$	В1	1	Convincingly shown but condone verification (AG)
(ii)	3 rd term = 517.5 4 th term = 776.25	B1 B1	2	Allow 517 or 518 Allow AWRT 776 or 777 SC B1 for answers 776(.25) and 1164(.375)
(b)	1801 value from 4 th term i.e. (AWRT) 7 760 000 to 3 SF or 7 770 000	M1 A1F	2	ft c's value for 4 th term in (a) (ii) NMS 2/2 for c's answer ×10 000
	Total		5	
6(a)	$\sin^2 x + \cos^2 x \equiv 1$	M1		Stated or used
	So at $P/Q \sin^2 x + \sin x - 1 = 0$	A1	2	convincingly shown (AG)
(b)(i)	$\sin x = \frac{-1 \pm \sqrt{5}}{2}$	M1A1	2	NMS 2/2 for AWRT 0.618 and AWRT -1.62
(ii)	Pos value is 0.618(03)	A1		Convincingly shown (AG)
	$-1.62 \le -1$ so impossible	E1	2	Allow ' $\sin x \cos' t$ be neg in given domain'
(c)	Attempt at sin ⁻¹ 0.618	M1		PI by answer in radians or degrees
	x – coord of P is 0.67	A1		Allow AWRT 0.67 or 0.66
	x –coord of Q is 2.48	A1F	3	AWRT 2.48 or 2.47 or 142; ft wrong co-ordinate for <i>P</i>
	Total		9	

Pure 2 June 2002

Ī		Total		(5)	
	2(a)(i)	Setting up simultaneous equations	M1		
		b = 0.2	A1		
		a = 12	A1	(3)	
	(ii)	$p_3 = 14.92$	B1√	(1)	Accept 14.9 ft their <i>a</i> and <i>b</i>
	(b)	$w = 12 + 0.2w \text{ (or } \equiv)$	M1		
		w = 15	A1 ✓	(2)	Must be equation: 15 only gets M0A0
		Total		(6)	

Pure 2 June 2004

Q	Solution	Marks	Total	Comments
6(a)(i)	C(4, 3)	B1		
(ii)	r = 2	B1	2	
(b)(i)	$(x-4)^2 + (y-3)^2 = 4$ and $y = x+1$			
	meet when $(x-4)^2 + (x+1-3)^2 = 4$	M1		Substitution attempted
	$\Rightarrow (x-4)^2 + (x-2)^2 = 4$			or eliminating x
	$(x^2-8x+16)+(x^2-4x+4)=4$	M1		Multiply out correctly and simplification
	$2x^2 - 12x + 20 = 4$			attempted
	$x^2 - 6x + 8 = 0$	A1		quadratic
	(x-4)(x-2)=0	M1		factorise/other valid method attempted
	x = 4 or $x = 2$			
	$x = 4$ \Rightarrow $y = 5$ $x = 2$ \Rightarrow $y = 3$ $A(4, 5) & B(2, 3)$	A1ft	5	Both points (cao)
	$x=2 \Rightarrow y=3$ $A(4,5) & B(2,3)$	Ain	3	Both points (cao)
(ii)	Area of segment = $\frac{1}{4}\pi(2)^2 - \frac{1}{2}(2\times 2)$	M1		$\frac{1}{4}$ × circle - triangle
		A1ft		(on their value of r)
	$=\pi-2$	A1	3	AG (AWRT 1.14)
	Total		10	

Pure 3 January 2002

Q	Solution	Marks	Total	Comments
1	$\binom{7}{4}$ 3 ³ 2 ⁴	M1		$^{7}C_{4}$ in any form and either
				3 ³ or 2 ⁴ present or implied
		A1		All present.
	15 120	A1	3	Accept as part of an expansion
	Total		3	

Pure 3 June 2003

Q	Solution	Marks	Total	Comments
1	$\binom{9}{3}$ 2 ⁶ 3 ³	M1		⁹ C ₃ in any form
	(3)	M1		2 ⁶ and 3 ³ present or implied
	145 152	A1	3	Accept as part of an expansion
	Total		3	